
 

Gagandeep Singh: 9796022423 Page 1 
 

  Programming in C++      
Basic Concepts of C++ 

 Keywords: Keywords are the certain reserved words that convey a special meaning to 
thecompiler. These are reserve for special purpose and must not be used as identifier name. 

Eg:- for , if,else , this , do, etc. 
 

 Identifiers: Identifiers are programmer defined names given to the various program 
elements such as variables, functions, arrays, objects, classes, etc.. It may contain digits, 
letters andunderscore, and must begin with a letter or underscore. 
 C++ is case sensitive as it treats upper andlower case letters differently. A keyword cannot be 
used as an identifiers.  
The following are somevalid identifiers: 
Pen,     time580,         s2e2r3,        _dos,        _HJI3,     _JK 
 

 Data Types in C++: Data types are means to identify the types of data and associated 
operations of handling it. Data types in C++ are of three types: 
1. Fundamental or Built-in data types: These data types are already known to compiler. These 
are the data types those are not composed of other data types. There are following 
fundamental datatypes in C++: 
(i) int data type (for integer)     (ii) char data type (for characters) 
(iii) float data type (for floating point numbers)  (iv) double data type 
2. Derived data types:- They are derived from fundamental data types. These are:- 
i) Array  ii) Pointer  iii) Function   iv) Reference 
3. User-defined data types :- which are defined by the User. 
i) Structure  ii) Class   iii) Union  iv) Enumerated 
 

 Data Type Modifiers: There are following four data type modifiers in C++ , which may 
be used to modify the fundamental data types to fit various situations more precisely: 
i) signed   ii) unsigned   iii) long   iv) short 
 

 Variables: A named memory location, whose contains can be changed with in program 
execution is known as variable.   OR 
A variable is an identifier that denotes a storage location, which contains can be varied during 
program execution. 
Declaration of Variables: Syntax for variable declaration is: 
datatypes variable_name1, variable_name2, variable_name3,……………. ; 
We can also initialize a variable at the time of declaration by using following syntax: 
datatypesvariable_name = value; 
In C++ both the declaration and initialization of a variable can be done simultaneously at the 
place where the variable is used first time this feature is known as dynamic initialization. e.g. 
   floatavg; 

avg = sum/count; 
then above two statements can be combined in to one as follows: 

floatavg = sum/count; 
 

 Constant: A named memory location, whose contains cannot be changed with in program 
execution is known as constant.  OR 
A constant is an identifier that denotes a storage location, which contains cannot be varied 
during program execution. 



 

Gagandeep Singh: 9796022423 Page 2 
 

Syntax for constant declaration is:  constdatatypesconstant_name = value ; 
e.g:-const float pi = 3.14; 

 

 Conditional operator ( ? : ):-The conditional operator (? :) is a ternary operator i.e., it 
require three operands. The general form ofconditional operator is: 

expression1? expression2: expression3 ; 
Where expression1 is a logical expression, which is either true or false. 
If expression1 is true then expression 2 will execute otherwise expression 3 will be executed. 
 

 Type Conversion: The process of converting one predefined data type into another is 
called typeconversion. Two forms are:- 

i) Implicit type conversion:- An implicit type conversion is a conversion performed by the 
compiler without programmer’s intervention. An implicit conversion is applied generally 
wheneverdifferent data types are intermixed in an expression. The C++ compiler converts all 
operands uptothe data type of the largest data type’s operand, which is called type 
promotion. 
(ii) Explicit type conversion :- An explicit type conversion is user-defined that forces an 
expression to be of specific data type. 
Some important Syntax in C++: 

1. if Statement :-   
Syntax:-  if (condition) 
 { 
            Statement1; 
             } 
               else 
             { 
            Statement2; 
             } 

3. Switch Statement:- 
switch (expression/variable) 
{ case value_1: statement-1; 
break; 
case value_2: statement-2; 
break; 
: 
case value_n: statement n; 
break; 
[ default: statement m ] 
} 

2. if else if ladder:- 
Syntax:-  if (condition) 
 { 
            Statement1; 
             } 
elseif(condition) 
             { 
            Statement2; 
            } 
           else 
             { 
            Statement3; 
             } 

5. while Loop: 
while (loop_condition) 
{ 
Loop_body; 
} 
 

4. The for Loop: 
for(initialization;Condition;update_expression) 
{ 
 Body of loop; 
} 
 

6. do-while loop: 
do 
 {  
Loop_body; 
 } 
while (loop_condition); 



 

Gagandeep Singh: 9796022423 Page 3 
 

 Functions :- Function is a block of statement that are used to perform some specific task. 
1. Built-in Functions (Library Functions) :- The functions, which are already defined in C++ 
Library (in any header files) and a user can directly use these function without giving their 
definition is known as library functions. e.g., sqrt( ), toupper( ), isdigit( ), abs() etc. 
 
Following are some important Header files and useful functions within them : 
stdio.h (standard I/O function) gets( ) , puts( ) 
ctype.h (character type function) isalnum( ) , isalpha( ), isdigit ( ), islower (),isupper ( ), 
tolower (), string.h (string related function ) strcpy ( ), strcat ( ), strlen( ), strcmp( ),strcmpi( ) , 
strrev(),  
     strupr( ) , strlwr( ) 
math.h (mathematical function) fabs ( ), pow ( ), sqrt ( ), sin ( ), cos ( ), abs ( ) 
stdlib.h randomize ( ), random ( ) 
 
2. User-defined function :- The functions which are defined by user for a specific purpose is 
known as user-defined function. For using a user-defined function it is required, first define it 
and then using. 
Declaration of user-defined Function: 
Return_typefunction_name(List of formal parameters) 
 { 
 Body of the function; 
 } 

 Calling a Function:- When a function is called then a list of actual parameters is supplied 
that 

should match with formal parameter list in number, type and order of arguments. 
Syntax for calling a function is: 
function_name( list of actual parameters ); 
 

 Call by Value (Passing by value) :- The call by value method of passing arguments to a 
functioncopies the value of actual parameters into the formal parameters , that is, the 
function creates its owncopy of argument values and then use them, hence any chance 
made in the parameters in functionwill not reflect on actual parameters . The above given 
program is an example of call by value. 
 

 Call by Reference ( Passing by Reference) :- The call by reference method uses a different 
mechanism. In place of passing value to the function being called , a reference to the original 
variable is passed . This means that in call by reference method, the called function does not 
createits own copy of original values , rather, its refers to the original values only by different 
names i.e. reference . Thus the called function works the original data and any changes are 
reflected to theoriginal values. 
 

 Formal Parameters:- The parameters that appear in function definition are formal 
parameters. 
 

 Actual Parameters :- The parameters that appears in a function call statement are actual 
parameters. 

 
 
 



 

Gagandeep Singh: 9796022423 Page 4 
 

  Object Oriented Programming       

 Class :- A class is a group of Object that share common properties and relationships. 
Basically a class is a collection of data (data member) and functions (member functions). It 
can be seen as a blue print for the object. No memory is allocated when aclass is created. 
Memory is allocated only when an object is created. 

 Object :- An Object is an instance of the class.i.e It is a run time entity. 

 Data member:- The data declared within the class. 

 Member functions :- Member functions are the methods which are declared/defined 
inside the classand operate upon the data member. 

 Data Abstraction: - Data abstraction refers to the act of representing essential features 
without knowing its background details. 

 Data Encapsulation:-The Wrapping up of data and function together in a single unit called 
class.  

 Data hiding:- Hides internal object details (data members). Data hiding ensures exclusive 
dataaccess to class members and protects object integrity by preventing any changes. 

 
Inheritance: Inheritance is the process of creating a new class from an existing class or base 
class. 

 Base Class :- The class from which methods and data members are derived to new class is 
knows asbase class. The base class is also known as parent class or super class. 

 Derived Class:- The class that is deriving data and methods from base class is called 
derived class.Derived class is also known as a child class or sub class. 
 

 Polymorphism:- Poly means many and morphism meansmore than one form. Refers to 
the abilityof processing of data in more than one form. 

Access specifier :-private, protected, public (default access specifier is private) 
Accessibility of private, protected and public members 

Accessibility Private  Protected  Public 
Through member functions Yes  Yes  Yes 
Through object of the class No No  Yes 
Through derived class  No  Yes   Yes 

Syntax of a class:- 
class class_name 
{ 
private: 
 declaration of data member; 
 declaration/definitionmember function; 
protected: 
 declaration of data member; 
 declaration/definition member function 
public: 
 declaration of data member; 
 declaration/definition member function 
}; 
 

Eg:-  
class student 
{ 
private: 
 char name[30]; 
int age; 
int marks; 
protected: 
 char grade; 
public: 
 void getdata(); 
 void showdata(); 
}; 
 

 

 Referencing class members:- All the data members of the class are directly accessible to the 



 

Gagandeep Singh: 9796022423 Page 5 
 

member function of that class. They don’t need any object name to be prefixed before it but 
fromoutside the class any reference to the data member is done with the dot (.) operator. 
syntax for creating an object: 
<class_name><Object_name>; 
Example: 
student s1; 

 Accessing members from object of the class:- A data member and member function 
declared underpublic access specifier can be assessed by the objects directly. 

Syntax:-objectname.memberfunction; 
e.g:-  s1.getdata(); 

s1.showdata(); 

 Defining Member functions:- Member functions of the class can be defined in 
thefollowing two ways:- 

(a) Inside the class definition (inline function):- In this method, the function is defined within 
the class body and are treated as inline by default. 
(b) Outside the class definition:-In this way function prototype is declared within class body 
and function is defined outside the classwith the help of Scope Resolution operator (::). 

Syntax for defining a member functionoutside the class 
definition. 

Example for defining a member 
functionoutside the class 
definition. 

<returntype><class name> :: <functionname>(parameter 
list) 
{ 
body of the function; 
} 
 

void student::showdata() 
{ 
cout<<”\n Name “<<name; 
cout<<”\n Age “<age; 
cout<”\n Marks”<marks; 
} 
 

 Constructors and Destructors  
Constructor:- A constructor is a special member function whose task is to initialize the objects 
of its class. Constructor name is same as a class name. The constructor is invoked whenever 
an object of the associated class is created. 
Special characteristics of Constructors 

1. A constructor name is same as the name of class. 
2. They are invoked automatically when the object are created. 
3. It should nothave any return type not even void. 
4. Constructor should bedeclared in the public section. 
5. Constructors are used to initialize the data members of the class. 
6. They cannot be static. 
7. All object of the class having a constructor are initialized before their use. 
8. They cannot be declared const or volatile but a constructor can be invoked as a const 

and volatile object. 
9. They cannot be inherited. 
10. We cannot refer to the address of constructor. 

Syntax:- Example:- 

  class classname 
{ 
public: 
classname(parameter list); 
}; 

class Abc 
{ 
public: 
Abc(); 
}; 



 

Gagandeep Singh: 9796022423 Page 6 
 

Constructor Defined inside the 
class definition 

Constructor Defined outside the class 
definition 

  class Abc 
{ 
int a; 
public: 
int b; 
Abc() 
{  
a=b= 20; 
} 
}; 
 

class Abc 
{ 
int a; 
public: 
int b; 
Abc(); 
}; 
abc : : abc() 
{  
a=b= 20; 
} 

 
 
Types of Constructors 
1. Default Constructor (No argument constructor):- A default constructor accepts no 
parameters. The default constructor initializes the data member by the dummy values. When 
no constructor is defined in the class, compiler provides or supplies the defaultconstructor. 
 Eg:-Abc a; 
 
2. Parameterized Constructor:-A constructor with some parameters list is called 
parameterized constructor.i.e constructors with arguments are known as parameterized 
constructors. 

 It allow the user to initialize various data elements of different objects with different 
values when they are created. 
 
3. Overloaded Constructor:- When we use more than one constructor with different 
arguments in a class. 
 
4. Copy Constructor:-A constructor that accepts a reference to an instance of its own class as 
an argument is called as Copy Constructor. A copy constructor is used to create new object 
with the similar values of existing object. A copy constructor is invoked when one object is 
defined and initialized with another object of the same class. 
  OR 
A copy constructor is a constructor that can be used to initialize one object with the value of 
another object of same class during declaration i.eit is a special constructor that can be used 
to declare and initialize one object from another object. 
 
Syntax for declaration of copy constructor:- 
(classname&obj) 
for example:- Student(Student &s) 
Eg:   Hello H1(5,10);  //H1 is intitalize with value. 
 Hello H2(H1);  //H2 will copy the contents of H1 
 Hello H3= H1;  //H3 will copy the contents of H1 
 
 
 
 



 

Gagandeep Singh: 9796022423 Page 7 
 

Example of three different types of constructors. (default, parameterize, copy). 
 
class student 
{ 
introllno; 
float percentage; 
public: 
student() // default constructor 
{ 
rollno=0; 
percentage=0.0; 
} 
student(intrno,float p) //parameterized constructor 
{ 
rollno=rno; 
percentage=p; 
} 
student(student &s) // copyconstructor 
{ 
rollno=s.rollno; 
percentage=s.percentage; 
 } 
void display() 
{ 
cout<<"RNo. "<<rollno; 
cout<<"\n per "<<percentage; 
} 
}; 
void main() 
{ 
student s; //call for the default constructor 
student s1(5,88.5); //call for the parametrized constructor 
student s2=s1;//call for the copy constructor 
s.display(); 
s1.display(); 
s2.display(); 
getch(); 
} 
 
Note 1 : When parameterized constructor is defined one must define the default constructor 
also,otherwise error may occur when a call to default constructor is made. 
Note 2: When multiple constructors are defined for a class it is also known as constructor 
overloading. 
 
Inheritance:-Inheritance is the process of creating a new class from existing class. The existing 
class isknown as the base/super/parent class and newly created class is known as 
derived/sub/child class.The derived class will inherit the properties of base class. 
 
 



 

Gagandeep Singh: 9796022423 Page 8 
 

Advantages of Inheritance:- 
Reusability: It helps the code to be reused in derived class. The base class is defined and once 
it iscompiled, it needs not to be reworked. 
Transitivity: If class B inherits properties of another class A, then all subclasses of class B will 
automatically inherits the properties of A. It is called transitive property. 
Types of Inheritance: 
1. Single inheritance:- When a sub class inherits only form one base class, is known as single 
inheritance. 
2. Multiple Inheritance:- When a sub class inherits from multiple base classes, is known as 
multiple inheritance. 
3. Hierarchical Inheritance:- When many sub classes inherit from a single class, it is known as 
hierarchical inheritance. 
4. Multilevel Inheritance:- When a class inherit from a class that itself inherits from another 
class it is known as a multilevel inheritance. 
5. Hybrid Inheritance: It is a combination of two or more of above types of inheritance. There 
isno pattern of deriving from classes. 
Syntax for defining a derived class: 
class<derived class name>:<visibility mode><base class name> 
{ 
//Data members of derived class 
//member functions of derived class 
}; 
 
Visibility modes 
The visibility mode in the definition of the derived class specifies whether the features of the 
base class are privately derived or publicly derived or protected derived. 
 
Constructor and Destructor in Derived classes: 
When a base class and a derived class both have constructor and destructor, the constructors 
are 
executed in order of inheritance and destructors are executed in reverse order. That is, the 
base 
constructor is executed before the constructor of the derived class and the destructor of the 
derivedclass is executed before the base class destructor.  
 
 

Data File Handling In C++  
File: - The information / data stored under a specific name on a storage device, is called a file. 
Stream: - It refers to a sequence of bytes. 
 
Text file: - It is a file that stores information in ASCII characters. In text files, each line of text is 
terminated with a special character known as EOL (End of Line) character or delimiter 
character. 
When this EOL character is read or written, certain internal translations take place. 
 
Binary file:- It is a file that contains information in the same format as it is held in memory. In 
binary files, no delimiters are used for a line and no translations occur here. 
Classes used for different file related operation 
 



 

Gagandeep Singh: 9796022423 Page 9 
 

ofstream: Object of ofstream class used to write data to the files. 
ifstream: Object of ifstream class used to read from files 
fstream: Object of fstream class used to both read and write from/to files. 
Opening a file 
Opening file using constructor 

ofstreamoutFile("sample.txt"); //output only 
ifstreaminFile(“sample.txt”); //input only 

Opening File Using open () 
StreamObject.open(“filename”, *mode+); 
ofstreamoutFile; 
outFile.open("sample.txt"); 
ifstreaminFile; 
inFile.open("sample.txt"); 

 
File mode parameter Meaning 
ios::app Adds data to the end of file 
ios::ate Goes to end of file on opening 
ios::binary File opens in binary mode 
ios::in Opens file for reading only 
ios::out Opens file for writing only 
ios::nocreate Open fails if the file does not exist 
ios::noreplace Open fails if the file already exist 
ios::trunc Deletes the contents of the file if it exist 
All these flags can be combined using the bitwise operator OR (|). For example, if we want to 
openthe file example.dat in binary mode to add data we could do it by the following call to 
memberfunction open(): 

fstream file; 
file.open ("example.dat", ios::out | ios::app | ios::binary); 

Closing File 
outFile.close(); 
inFile.close(); 

Input and output operation 
put() and get() function:- 
the function put() writes a single character to the associated stream. Similarly, the function 
get()reads a single character form the associated stream. 
example : 

file.get(ch); 
file.put(ch); 

write() and read() function 
write() and read() functions write and read blocks of binary data. 

example: 
file.read((char *)&obj, sizeof(obj)); 
file.write((char *)&obj, sizeof(obj)); 
 
Determining End of File. 
eof():-returns true (nonzero) if end of file is encountered while reading; otherwise return 
false(zero). 
 
 



 

Gagandeep Singh: 9796022423 Page 10 
 

File Pointers And Their Manipulation 
All I/O stream objects have, at least, one internal stream pointer: 
ifstream has a pointer known as the get pointer that points to the element to be read in the 
next inputoperation.  
ofstream has a pointer known as the put pointer that points to the location where the next 
element has to be written. fstream, inherits both, the get and the put pointers. 
These internal stream pointers that point to the reading or writing locations within a stream 
can bemanipulated using the following member functions: 
The other prototype for these functions is: 
seekg(offset, refposition ); 
seekp(offset, refposition ); 
The parameter offset represents the number of bytes(any negative or positive integer value 
forbackward or forward movement) the file pointer is to be moved from the location 
specified by theparameter refposition. The refposition takes one of the following three 
constants defined in the iosclass. 
ios::beg start of the file 
ios::cur current position of the pointer 
ios::end end of the file 

Program to count number of words from 
atext file “input.txt” 

Program to count number of vowels in a text 
file “input.txt” 

#include<fstream.h> 
void main() 
{ ifstream fin; 
fin.open("input.txt"); 
 char words[50]; int count=0; 
 while(!fin.eof()) 
 { fin>>words; 
count++; 
 } 
cout<<"Number of words in file is"<<count; 
fin.close(); 
} 

#include<fstream.h> 
void main() 
{ 
ifstream fin; 
fin.open("input.txt"); 
 char ch; int count=0; 
 while(!fin.eof()) 
 { 
fin.get(ch); 
 if(ch=='a'||ch=='e'||ch=='i'||ch=='o'||ch=='u') 
count++; 
 } 
cout<<"Number of vowels in file are "<<count; 
fin.close();  
} 

 
seekg() moves get pointer(input) to a specified location 
seekp() moves put pointer (output) to a specified location 
tellg() gives the current position of the get pointer 
tellp() gives the current position of the put pointer 
 
Pointer:- Pointer is a variable that holds a memory address of another variable of same type. 
Declaration and Initialization of Pointers : 
Syntax : 
Datatype *variable_name; 
e.g., int *p;  float *p1;  char *c; 
Two special unary operator * and & are used with pointers. The & is a unary operator that 
returns thememory address of its operand. 
e.g., int a = 10;  int *p;   p = &a; 



 

Gagandeep Singh: 9796022423 Page 11 
 

Pointer arithmetic: Two arithmetic operations, addition and subtraction, may be performed 
onpointers. When you add 1 to a pointer, you are actually adding the size of whatever the 
pointer ispointing at. That is, each time a pointer is incremented by 1, it points to the memory 
location of thenext element of its base type. 
e.g. int *p;   p++; 
If current address of p is 1000, then p++ statement will increase p to 1002, not 1001. 
Adding 1 to a pointer actually adds the size of pointer’s base type. 
Base address : A pointer holds the address of the very first memory location of array where it 
ispointing to. The address of the first memory location of array is known as BASE ADDRESS. 
Dynamic Allocation Operators : C++ dynamic allocation operators allocate memory from the 
freestore/heap/pool, the pool of unallocated heap memory provided to the program. C++ 
defines two operatorsnew and delete that perform the task of allocating and freeing memory 
during runtime. 
Pointers and Arrays : C++ treats the name of an array as constant pointer which contains base 
addressi.e address of first memory location of array. 
typedef :- The typedef keyword allows to create alias for data types. the syntax is: 
typedefexisting_data_typenew_name ; 
e.g. typedefintnum; 
 
Function Overloading: Function overloading is the process of defining and using functions 
with same name having different argument list and/or different return types. These functions 
aredifferentiated during the calling process by the number, order and types of arguments 
passed tothese functions. 
Example: 
int Add (int ,int) ; 
double Add (double ,double) ; 
float Add (int ,float) ; 


