

By PANCHUL SHARMA 7006155132

Make correct statements by filling in the symbols \subset or $\not\subset$ in the blank spaces:

- (i) {2, 3, 4} ... {1, 2, 3, 4, 5}
- (ii) $\{a, b, c\} \dots \{b, c, d\}$
- (iii) {x: x is a student of Class XI of your school} ... {x: x student of your school}
- (iv) $\{x: x \text{ is a circle in the plane}\}$... $\{x: x \text{ is a circle in the same plane with radius 1 unit}\}$
- (v) $\{x: x \text{ is a triangle in a plane}\}...\{x: x \text{ is a rectangle in the plane}\}$
- (vi) {x: x is an equilateral triangle in a plane}... {x: x is a triangle in the same plane}
- (vii) {x: x is an even natural number} ... {x: x is an integer}

Answer 1:

- (i) $\{2,3,4\} \subset \{1,2,3,4,5\}$
- (ii) $\{a,b,c\} \not\subset \{b,c,d\}$
- (iii) $\{x: x \text{ is a student of class XI of your school}\}\subset \{x: x \text{ is student of your school}\}$
- (iv) $\{x: x \text{ is a circle in the plane}\} \not\subset \{x: x \text{ is a circle in the same plane with radius 1 unit}\}$
- (v) $\{x: x \text{ is a triangle in a plane}\} \not\subset \{x: x \text{ is a rectangle in the plane}\}$
- (vi) $\{x: x \text{ is an equilateral triangle in a plane}\}\subset \{x: x \text{ in a triangle in the same plane}\}$ (vii) $\{x: x \text{ is an even natural number}\}\subset \{x: x \text{ is an integer}\}$

Question 2:

Examine whether the following statements are true or false:

- (i) $\{a, b\} \not\subset \{b, c, a\}$
- (ii) $\{a, e\} \subset \{x: x \text{ is a vowel in the English alphabet}\}$
- (iii) $\{1, 2, 3\} \subset \{1, 3, 5\}$
- (iv) $\{a\} \subset \{a. b, c\}$
- (v) $\{a\} \in (a, b, c)$
- (vi) $\{x: x \text{ is an even natural number less than } 6\} \subset \{x: x \text{ is a natural number which divides } 36\}$

Answer 2:

- (i) False. Each element of $\{a, b\}$ is also an element of $\{b, c, a\}$.
- (ii) True. a, e are two vowels of the English alphabet.

- (iii) False. $2 \in \{1, 2, 3\}$; however, $2 \notin \{1, 3, 5\}$
- (iv) True. Each element of $\{a\}$ is also an element of $\{a, b, c\}$.
- (v) False. The elements of $\{a, b, c\}$ are a, b, c. Therefore, $\{a\} \subset \{a, b, c\}$
- (vi) True. $\{x:x \text{ is an even natural number less than } 6\} = \{2, 4\}$

 $\{x:x \text{ is a natural number which divides } 36\} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$

Question 3:

Let $A = \{1, 2, \{3, 4,\}, 5\}$. Which of the following statements are incorrect and why?

- (i) {3, 4} ⊂ A
- (ii) {3, 4}}∈ A
- (iii) {{3, 4}}⊂ A
- (iv) 1∈ A
- (v) 1 ⊂ A
- (vi) $\{1, 2, 5\} \subset A$
- (vii) $\{1, 2, 5\} \in A$
- (viii) $\{1, 2, 3\} \subset A$
- (ix) $\Phi \in A$
- (x) Φ ⊂ A
- (xi) $\{\Phi\} \subset A$

Answer 3:

 $A = \{1, 2, \{3, 4\}, 5\}$

- (i) The statement {3, 4} ⊂ A is incorrect because 3 ∈ {3, 4}; however, 3∉A.
- (ii) The statement $\{3, 4\} \in A$ is correct because $\{3, 4\}$ is an element of A.
- (iii) The statement $\{\{3, 4\}\} \subset A$ is correct because $\{3, 4\} \in \{\{3, 4\}\}\}$ and $\{3, 4\} \in A$.
- (iv) The statement 1∈A is correct because 1 is an element of A.
- (v) The statement 1⊂ A is incorrect because an element of a set can never be a subset of itself.
- (vi) The statement $\{1, 2, 5\} \subset A$ is correct because each element of $\{1, 2, 5\}$ is also an element of A.
- (vii) The statement $\{1, 2, 5\} \in A$ is incorrect because $\{1, 2, 5\}$ is not an element of A.
- (viii) The statement $\{1, 2, 3\} \subset A$ is incorrect because $3 \in \{1, 2, 3\}$; however, $3 \notin A$.
- (ix) The statement $\Phi \in A$ is incorrect because Φ is not an element of A.
- (x) The statement $\Phi \subset A$ is correct because Φ is a subset of every set.
- (xi) The statement $\{\Phi\} \subset A$ is incorrect because $\Phi \in \{\Phi\}$; however, $\Phi \in A$.

Write down all the subsets of the following sets:

- (i) $\{a\}$
- (ii) $\{a, b\}$
- (iii) {1, 2, 3}
- (iv) Φ

Answer 4:

- (i) The subsets of $\{a\}$ are Φ and $\{a\}$.
- (ii) The subsets of $\{a, b\}$ are Φ , $\{a\}$, $\{b\}$, and $\{a, b\}$.
- (iii) The subsets of $\{1, 2, 3\}$ are Φ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{2, 3\}$, $\{1, 3\}$ and $\{1, 2, 3\}$
- (iv) The only subset of Φ is Φ .

Question 5:

How many elements has P(A), if $A = \Phi$?

Answer 5:

We know that if A is a set with m elements i.e., n(A) = m, then $n[P(A)] = 2^m$.

If
$$A = \Phi$$
, then $n(A) = 0$.

:
$$n[P(A)] = 2^0 = 1$$

Hence, P(A) has one element.

Question 6:

Write the following as intervals:

- (i) $\{x: x \in \mathbb{R}, -4 < x \le 6\}$
- (ii) $\{x: x \in \mathbb{R}, -12 < x < -10\}$
- (iii) $\{x: x \in \mathbb{R}, 0 \le x < 7\}$
- (iv) $\{x: x \in \mathbb{R}, 3 \le x \le 4\}$

Answer 6:

- (i) $\{x: x \in \mathbb{R}, -4 < x \le 6\} = (-4, 6]$
- (ii) $\{x: x \in \mathbb{R}, -12 < x < -10\} = (-12, -10)$
- (iii) $\{x: x \in \mathbb{R}, 0 \le x < 7\} = [0, 7)$
- (iv) $\{x: x \in \mathbb{R}, 3 \le x \le 4\} = [3, 4]$

Write the following intervals in set-builder form:

- (i) (-3, 0)
- (ii) [6, 12]
- (iii) (6, 12]
- (iv) [-23, 5)

Answer 7:

- (i) $(-3, 0) = \{x: x \in \mathbb{R}, -3 < x < 0\}$
- (ii) $[6, 12] = \{x: x \in \mathbb{R}, 6 \le x \le 12\}$
- (iii) $(6, 12] = \{x: x \in \mathbb{R}, 6 < x \le 12\}$
- (iv) $[-23, 5) = \{x: x \in \mathbb{R}, -23 \le x < 5\}$

Question 8:

What universal set (s) would you propose for each of the following?

- (i) The set of right triangles
- (ii) The set of isosceles triangles

Answer 8:

- (i) For the set of right triangles, the universal set can be the set of triangles or the set of polygons.
- (ii) For the set of isosceles triangles, the universal set can be the set of triangles or the set of polygons or the set of two-dimensional figures.

Given the sets $A = \{1, 3, 5\}$, $B = \{2, 4, 6\}$ and $C = \{0, 2, 4, 6, 8\}$, which of the following may be considered as universals set (s) for all the three sets A, B and C

- (i) {0, 1, 2, 3, 4, 5, 6}
- (ii) **Φ**
- (iii) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- (iv) {1, 2, 3, 4, 5, 6, 7, 8}

Answer 9:

(i) It can be seen that $A \subset \{0, 1, 2, 3, 4, 5, 6\}$

 $B \subset \{0, 1, 2, 3, 4, 5, 6\}$

However, $C \not\subset \{0, 1, 2, 3, 4, 5, 6\}$

Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.

(ii) A ⊄ Φ, B ⊄ Φ, C ⊄ Φ

Therefore, Φ cannot be the universal set for the sets A, B, and C.

(iii) $A \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $B \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

 $C \subset \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B, and C.

(iv) $A \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $B \subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

However, $C \not\subset \{1, 2, 3, 4, 5, 6, 7, 8\}$

Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B, and C.

Exercise 1.4

Question 1:

Find the union of each of the following pairs of sets:

- (i) $X = \{1, 3, 5\};$ $Y = \{1, 2, 3\}$
- (ii) $A = \{a, e, i, o, u\};$ $B = \{a, b, c\}$
- (iii) $A = \{x: x \text{ is a natural number and multiple of 3}$ $B = \{x: x \text{ is a natural number less than 6} \}$
- (iv) $A = \{x: x \text{ is a natural number and } 1 < x \le 6\}$ $B = \{x: x \text{ is a natural number and } 6 < x < 10\}$
- (v) $A = \{1, 2, 3\}; B = \Phi$

Answer 1:

- (i) $X = \{1, 3, 5\}$ $Y = \{1, 2, 3\}$ $X \cup Y = \{1, 2, 3, 5\}$
- (ii) $A = \{a, e, i, o, u\} B = \{a, b, c\}$ $A \cup B = \{a, b, c, e, i, o, u\}$
- (iii) A = $\{x: x \text{ is a natural number and multiple of } 3\} = \{3, 6, 9 ...\}$ B = $\{x: x \text{ is a natural number less than } 6\} = \{1, 2, 3, 4, 5, 6\}$ A \cup B = $\{1, 2, 4, 5, 3, 6, 9, 12 ...\}$
- $A \cup B = \{x: x = 1, 2, 4, 5 \text{ or a multiple of 3}\}$
- (iv) $A = \{x: x \text{ is a natural number and } 1 < x \le 6\} = \{2, 3, 4, 5, 6\}$ $B = \{x: x \text{ is a natural number and } 6 < x < 10\} = \{7, 8, 9\}$ $A \cup B = \{2, 3, 4, 5, 6, 7, 8, 9\}$
- $\therefore \quad \mathsf{A} \cup \mathsf{B} = \{x \colon x \in \mathsf{N} \text{ and } 1 < x < \mathsf{10}\}$
- (v) $A = \{1, 2, 3\}, B = \Phi$ $A \cup B = \{1, 2, 3\}$

Question 2:

Let $A = \{a, b\}$, $B = \{a, b, c\}$. Is $A \subset B$? What is $A \cup B$?

Answer 2:

Here,
$$A = \{a, b\}$$
 and $B = \{a, b, c\}$
Yes, $A \subset B$.
 $A \cup B = \{a, b, c\} = B$

Question 3:

If A and B are two sets such that $A \subset B$, then what is $A \cup B$?

Answer 3:

If A and B are two sets such that $A \subset B$, then $A \cup B = B$.

If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, $C = \{5, 6, 7, 8\}$ and $D = \{7, 8, 9, 10\}$; find

- (i) A U B
- (ii) A UC
- (iii) Buc
- (iv) BUD
- (V) AUBUC
- (vi) AUBUD
- (vii) BuCuD

Answer 5:

 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}, C = \{5, 6, 7, 8\} \text{ and } D = \{7, 8, 9, 10\}$

- (i) $A \cup B = \{1, 2, 3, 4, 5, 6\}$
- (ii) $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- (iii) B \cup C = {3, 4, 5, 6, 7, 8}
- (iv) $B \cup D = \{3, 4, 5, 6, 7, 8, 9, 10\}$
- (v) $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- (vi) $A \cup B \cup D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- (vii) $B \cup C \cup D = \{3, 4, 5, 6, 7, 8, 9, 10\}$

Question 5:

Find the intersection of each pair of sets:

- (i) $X = \{1, 3, 5\}$ $Y = \{1, 2, 3\}$
- (ii) $A = \{a, e, i, o, u\}$ $B = \{a, b, c\}$
- (iii) $A = \{x: x \text{ is a natural number and multiple of 3}$ $B = \{x: x \text{ is a natural number less than 6} \}$
- (iv) $A = \{x: x \text{ is a natural number and } 1 < x \le 6\}$ $B = \{x: x \text{ is a natural number and } 6 < x < 10\}$
- (v) $A = \{1, 2, 3\}, B = \Phi$

Answer 5:

- (i) $X = \{1, 3, 5\}, Y = \{1, 2, 3\}$ $X \cap Y = \{1, 3\}$
- (ii) $A = \{a, e, i, o, u\}, B = \{a, b, c\}$ $A \cap B = \{a\}$
- (iii) A = $\{x: x \text{ is a natural number and multiple of } 3\} = \{3, 6, 9 ...\}$ B = $\{x: x \text{ is a natural number less than } 6\} = \{1, 2, 3, 4, 5\}$:: A \(\text{B} = \{3\}
- (iv) $A = \{x: x \text{ is a natural number and } 1 < x \le 6\} = \{2, 3, 4, 5, 6\}$

```
B = \{x: x \text{ is a natural number less than 6}\} = \{1, 2, 3, 4, 5\}

\therefore A \( \text{B} = \{3\}
```

(iv)
$$A = \{x: x \text{ is a natural number and } 1 < x \le 6\} = \{2, 3, 4, 5, 6\}$$

 $B = \{x: x \text{ is a natural number and } 6 < x < 10\}$
 $= \{7, 8, 9\}$
 $A \cap B = \Phi$

(v)
$$A = \{1, 2, 3\},$$
 $B = \Phi.$ So, $A \cap B = \Phi$

If A = $\{3, 5, 7, 9, 11\}$, B = $\{7, 9, 11, 13\}$, C = $\{11, 13, 15\}$ and D = $\{15, 17\}$; find

- (i) A N B
- (ii) Bnc
- (iii) ANCND
- (iv) Anc
- (v) B n D
- (vi) A ∩ (B ∪ C)
- (vii) A ∩ D
- (viii) A \(\text{(B \upsilon D)}\)
- (ix) (A ∩ B) ∩ (B ∪ C)
- (x) (A u D) N (B u C)

Answer 6:

- (i) $A \cap B = \{7, 9, 11\}$
- (ii) $B \cap C = \{11, 13\}$
- (iii) $A \cap C \cap D = \{ A \cap C \} \cap D = \{11\} \cap \{15, 17\} = \Phi$
- (iv) $A \cap C = \{11\}$
- (v) $B \cap D = \Phi$
- (vi) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ = $\{7, 9, 11\} \cup \{11\} = \{7, 9, 11\}$
- (vii) $A \cap D = \Phi$
- (viii) $A \cap (B \cup D) = (A \cap B) \cup (A \cap D)$ = $\{7, 9, 11\} \cup \Phi = \{7, 9, 11\}$
- (ix) $(A \cap B) \cap (B \cup C) = \{7, 9, 11\} \cap \{7, 9, 11, 13, 15\} = \{7, 9, 11\}$
- (x) $(A \cup D) \cap (B \cup C) = \{3, 5, 7, 9, 11, 15, 17\} \cap \{7, 9, 11, 13, 15\}$ = $\{7, 9, 11, 15\}$

If A = $\{x: x \text{ is a natural number}\}$, B = $\{x: x \text{ is an even natural number}\}$ C = $\{x: x \text{ is an odd natural number}\}$ and D = $\{x: x \text{ is a prime number}\}$, find

- (i) A ∩ B
- (ii) Anc
- (iii) AND
- (iv) Bnc
- (v) B n D
- (vi) CND

Answer 7:

 $A = \{x: x \text{ is a natural number}\} = \{1, 2, 3, 4, 5 ...\}$

 $B = \{x: x \text{ is an even natural number}\} = \{2, 4, 6, 8 ...\}$

 $C = \{x: x \text{ is an odd natural number}\} = \{1, 3, 5, 7, 9 ...\}$

 $D = \{x: x \text{ is a prime number}\} = \{2, 3, 5, 7 ...\}$

- (i) A $\cap B = \{x : x \text{ is a even natural number}\} = B$
- (ii) A \cap C = {x: x is an odd natural number} = C
- (iii) A \cap D = {x: x is a prime number} = D
- (iv) B \cap C = Φ
- (v) $B \cap D = \{2\}$
- (vi) $C \cap D = \{x: x \text{ is odd prime number}\}$

Question 8:

Which of the following pairs of sets are disjoint

- (i) $\{1, 2, 3, 4\}$ and $\{x: x \text{ is a natural number and } 4 \le x \le 6\}$
- (ii) $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$
- (iii) {x: x is an even integer} and {x: x is an odd integer}

Answer 8:

(i) {1, 2, 3, 4}

 $\{x: x \text{ is a natural number and } 4 \le x \le 6\} = \{4, 5, 6\}$

Now, $\{1, 2, 3, 4\} \cap \{4, 5, 6\} = \{4\}$

Therefore, this pair of sets is not disjoint.

(ii) $\{a, e, i, o, u\} \cap (c, d, e, f\} = \{e\}$

Therefore, $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$ are not disjoint.

(iii) $\{x: x \text{ is an even integer}\} \cap \{x: x \text{ is an odd integer}\} = \Phi$

Therefore, this pair of sets is disjoint.

If $A = \{3, 6, 9, 12, 15, 18, 21\}, B = \{4, 8, 12, 16, 20\},\$

 $C = \{2, 4, 6, 8, 10, 12, 14, 16\}, D = \{5, 10, 15, 20\}; find$

- (i) A B
- (ii) A C
- (iii) A D
- (iv) B A
- (v) C A
- (vi) D A
- (vii) B-C
- (viii) B D
- (ix) C B
- (x) D-B
- (xi) C D
- (xii) D-C

Answer 9:

- (i) $A B = \{3, 6, 9, 15, 18, 21\}$
- (ii) $A C = \{3, 9, 15, 18, 21\}$
- (iii) $A D = \{3, 6, 9, 12, 18, 21\}$
- (iv) $B A = \{4, 8, 16, 20\}$
- (v) $C A = \{2, 4, 8, 10, 14, 16\}$
- (vi) $D A = \{5, 10, 20\}$
- (vii) $B C = \{20\}$
- (viii) $B D = \{4, 8, 12, 16\}$
- (ix) $C B = \{2, 6, 10, 14\}$
- (x) $D B = \{5, 10, 15\}$
- (xi) $C D = \{2, 4, 6, 8, 12, 14, 16\}$
- $(xii) D C = \{5, 15, 20\}$

Question 10:

If $X = \{a, b, c, d\}$ and $Y = \{f, b, d, g\}$, find

- (i) X Y
- (ii) Y X
- (iii) X N Y

Answer 10:

- (i) $X Y = \{a, c\}$
- (ii) $Y X = \{f, g\}$
- (iii) $X \cap Y = \{b, d\}$

Question 11:

If R is the set of real numbers and Q is the set of rational numbers, then what is R-Q?

Answer 11:

R: set of real numbers

Q: set of rational numbers

Therefore, R - Q is a set of irrational numbers.

Question 12:

State whether each of the following statement is true or false. Justify your answer.

- (i) {2, 3, 4, 5} and {3, 6} are disjoint sets.
- (ii) $\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.
- (iii) {2, 6, 10, 14} and {3, 7, 11, 15} are disjoint sets.
- (iv) {2, 6, 10} and {3, 7, 11} are disjoint sets.

Answer 12:

(i) False

As
$$3 \in \{2, 3, 4, 5\}, 3 \in \{3, 6\}$$

$$\Rightarrow$$
 {2, 3, 4, 5} \cap {3, 6} = {3}

(ii) False

As
$$a \in \{a, e, i, o, u\}, a \in \{a, b, c, d\}$$

$$\Rightarrow \{a, e, i, o, u\} \cap \{a, b, c, d\} = \{a\}$$

(iii) True

As
$$\{2, 6, 10, 14\} \cap \{3, 7, 11, 15\} = \Phi$$

(iv) True

As
$$\{2, 6, 10\} \cap \{3, 7, 11\} = \Phi$$

Exercise 1.5

Question 1:

Let $U = \{1, 2, 3; 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}$. Find

- (i) A'
- (ii) B'
- (iii) (AUC)
- (iv) $(A \cup B)'$
- (v) (A')
- (vi) (B-C)

Answer 1:

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} A = \{1, 2, 3, 4\} B = \{2, 4, 6, 8\}$

 $C = \{3, 4, 5, 6\}$

- (i) $A' = \{5, 6, 7, 8, 9\}$
- (ii) $B' = \{1, 3, 5, 7, 9\}$
- (iii) $A \cup C = \{1, 2, 3, 4, 5, 6\}$ $\therefore (A \cup C)' = \{7, 8, 9\}$
- (iv) $A \cup B = \{1, 2, 3, 4, 6, 8\}$ $(A \cup B)' = \{5, 7, 9\}$
- (v) $(A')' = A = \{1, 2, 3, 4\}$
- (vi) $B-C = \{2,8\}$

$$(B-C)' = \{1,3,4,5,6,7,9\}$$

Question 2:

If $U = \{a, b, c, d, e, f, g, h\}$, find the complements of the following sets:

- (i) $A = \{a, b, c\}$
- (ii) $B = \{d, e, f, g\}$
- (iii) $C = \{a, c, e, g\}$
- (iv) $D = \{f, g, h, a\}$

Answer 2:

 $U = \{a, b, c, d, e, f, g, h\}$

(i)
$$A = \{a, b, c\}$$

$$A' = \{d, e, f, g, h\}$$

(ii)
$$B = \{d, e, f, g\}$$

$$\therefore \mathbf{B'} = \{a, b, c, h\}$$

(iii)
$$C = \{a, c, e, g\}$$

$$\therefore C' = \{b, d, f, h\}$$

(iv)
$$D = \{f, g, h, a\}$$

$$\therefore D' = \{b, c, d, e\}$$

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

- (i) {x: x is an even natural number}
- (ii) {x: x is an odd natural number}
- (iii) {x: x is a positive multiple of 3}
- (iv) {x: x is a prime number}
- (v) {x: x is a natural number divisible by 3 and 5}
- (vi) {x: x is a perfect square}
- (vii) {x: x is perfect cube}

(viii)
$$\{x: x + 5 = 8\}$$
 (ix) $\{x: 2x + 5 = 9\}$

- (x) $\{x: x \ge 7\}$
- (xi) $\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}$

Answer 3:

U = N: Set of natural numbers

- (i) $\{x: x \text{ is an even natural number}\}' = \{x: x \text{ is an odd natural number}\}$
- (ii) $\{x: x \text{ is an odd natural number}\}' = \{x: x \text{ is an even natural number}\}$
- (iii) $\{x: x \text{ is a positive multiple of } 3\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a multiple of } 3\}$
- (iv) $\{x: x \text{ is a prime number}\}' = \{x: x \text{ is a positive composite number and } x = 1\}$
- (v) $\{x: x \text{ is a natural number divisible by 3 and 5}\}' = \{x: x \text{ is a natural number that is not divisible by 3 or 5}\}$
- (vi) $\{x: x \text{ is a perfect square}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect square}\}$
- (vii) $\{x: x \text{ is a perfect cube}\}' = \{x: x \in \mathbb{N} \text{ and } x \text{ is not a perfect cube}\}$

(viii)
$$\{x: x + 5 = 8\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 3\}$$

(ix)
$$\{x: 2x + 5 = 9\}' = \{x: x \in \mathbb{N} \text{ and } x \neq 2\}$$

(x)
$$\{x: x \ge 7\}' = \{x: x \in \mathbb{N} \text{ and } x < 7\}$$

(xi)
$$\{x: x \in \mathbb{N} \text{ and } 2x + 1 > 10\}' = \{x: x \in \mathbb{N} \text{ and } x \le 9/2\}$$

If
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},\$$

$$A = \{2, 4, 6, 8\}$$
 and $B = \{2, 3, 5, 7\}$.

Verify that

(i)
$$(A \cup B)' = A' \cap B'$$
 (ii) $(A \cap B)' = A' \cup B'$

Answer 4:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
$$A = \{2, 4, 6, 8\}, B = \{2, 3, 5, 7\}$$

(i)

$$(A \cup B)' = \{2, 3, 4, 5, 6, 7, 8\}' = \{1, 9\}$$

$$A' \cap B' = \{1, 3, 5, 7, 9\} \cap (1, 4, 6, 8, 9) = \{1, 9\}$$

$$\therefore (A \cup B)' = A' \cap B'$$

(ii)

$$(A \cap B)' = \{2\}' = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$A' \cup B' = \{1, 3, 5, 7, 9\} \cup \{1, 4, 6, 8, 9\} = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

$$\therefore (A \cap B)' = A' \cup B'$$

Question 5:

Draw appropriate Venn diagram for each of the following:

(ii)
$$A' \cap B'$$

(iv) $A' \cup B'$ Answer 5:

Question 6:

Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60° , what is A'?

Answer 6:

A' is the set of all equilateral triangles.

Fill in the blanks to make each of the following a true statement:

- (i) $A \cup A' = ...$
- (ii) $\Phi' \cap A = ...$
- (iii) $A \cap A' = ...$
- (iv) $U' \cap A = ...$

Answer 7:

- (i) $A \cup A' = U$
- (ii) $\Phi' \cap A = U \cap A = A$

$$\therefore \Phi' \cap A = A$$

- (iii) $A \cap A' = \Phi$
- (iv) U' \cap A = Φ \cap A = Φ

$$:: U' \cap A = \Phi$$

Exercise 1.6

Question 1:

If X and Y are two sets such that n(X) = 17, n(Y) = 23 and $n(X \cup Y) = 38$, find $n(X \cap Y)$.

Answer 1:

It is given that:

$$n(X) = 17, n(Y) = 23, n(X \cup Y) = 38$$

$$n(X \cap Y) = ?$$

We know that:

$$n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$$

$$38 = 17 + 23 - n(X \cap Y)$$

$$\Rightarrow n(X \cap Y) = 40 - 38 = 2$$

$$\therefore n(X \cap Y) = 2$$

Question 2:

If X and Y are two sets such that $X \cup Y$ has 18 elements, X has 8 elements and Y has 15 elements; how many elements does X $\cap Y$ have?

Answer 2:

It is given that:

$$n(X \cup Y) = 18$$
, $n(X) = 8$, $n(Y) = 15$

$$n(X \text{ if? } Y) = ?$$

We know that:

$$n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$$

$$1.18 = 8 + 15 - n(X \cap Y)$$

$$\Rightarrow n(X \cap Y) = 23 - 18 = 5$$

$$\therefore n(X \cap Y) = 5$$

Question 3:

In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people can speak both Hindi and English?

Answer 3:

Let H be the set of people who speak Hindi, and E be the set of people who speak English

$$: n(H \cup E) = 400, n(H) = 250, n(E) = 200 n(H \cap E) = ?$$

We know that: $n(H \cup E) = n(H) + n(E) - n(H \cap E)$

$$400 = 250 + 200 - n(H \cap E)$$

$$\Rightarrow$$
 400 = 450 - $n(H \cap E) \Rightarrow n(H \cap E) = 450 - 400$

$$n(H \cap E) = 50$$

Thus, 50 people can speak both Hindi and English.

If S and T are two sets such that S has 21 elements, T has 32 elements, and S \cap T has 11 elements, how many elements does S \cup T have?

Answer 4:

It is given that: n(S) = 21, n(T) = 32, $n(S \cap T) = 11$

We know that: $n(S \cup T) = n(S) + n(T) - n(S \cap T)$

$$n \cdot n (S \cup T) = 21 + 32 - 11 = 42$$

Thus, the set (S \cup T) has 42 elements.

Question 5:

If X and Y are two sets such that X has 40 elements, $X \cup Y$ has 60 elements and X $\cap Y$ has 10 elements, how many elements does Y have?

Answer 5:

It is given that: n(X) = 40, $n(X \cup Y)$

= 60, $n(X \cap Y)$ = 10 We know that:

 $n(X \cup Y) = n(X) + n(Y) - n(X \cap Y) :$

60 = 40 + n(Y) - 10

n(Y) = 60 - (40 - 10) = 30

Thus, the set Y has 30 elements.

Question 6:

In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the two drinks. How many people like both coffee and tea?

Answer 6:

Let C denote the set of people who like coffee, and T denote the set of people who like tea $n(C \cup T) = 70$, n(C) = 37, n(T) = 52 We know that:

$$n(C \cup T) = n(C) + n(T) - n(C \cap T) :: 70 = 37 + 52 - n(C \cap T)$$

$$\Rightarrow$$
 70 = 89 - $n(C \cap T)$

$$\Rightarrow n(C \cap T) = 89 - 70 = 19$$

Thus, 19 people like both coffee and tea.

In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Answer 7:

Let C denote the set of people who like cricket, and T denote the set of people who like tennis

$$n(C \cup T) = 65, \ n(C) = 40, \ n(C \cap T) = 10$$

We know that: $n(C \cup T) = n(C) + n(T) - n(C \cap T)$

$$.65 = 40 + n(T) - 10$$

$$\Rightarrow$$
 65 = 30 + $n(T)$

$$\Rightarrow n(T) = 65 - 30 = 35$$

Therefore, 35 people like tennis.

Now,

$$(T - C) \cup (T \cap C) = T$$

Also,

$$(T - C) \cap (T \cap C) = \Phi$$

$$\therefore n(T) = n(T - C) + n(T \cap C)$$

$$\Rightarrow 35 = n (T - C) + 10$$

$$\Rightarrow n (T - C) = 35 - 10 = 25$$

Thus, 25 people like only tennis.

In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak at least one of these two languages?

Answer 8:

Let F be the set of people in the committee who speak French, and S be the set of people in the committee who speak Spanish

$$n(F) = 50,$$
 $n(S) = 20,$ $n(S \cap F) = 10$

We know that: $n(S \cup F) = n(S) + n(F) - n(S \cap F)$

$$= 20 + 50 - 10$$

$$= 70 - 10 = 60$$

Thus, 60 people in the committee speak at least one of the two languages.