SET

CHAPTER_E1 SETS

PANCHUL SHARMA 7006155132

A set is a well-defined collection of distinct objects. Well-defined collection means that there exists a rule with the help of which it is possible to tell whether a given object belongs or does not belong to given collection. Generally sets are denoted by capital letters A, B, C, X, Y, Z etc.

Types of Sets

Let us discuss here, types of sets:

Empty Sets

The set, which has no elements or null elements. This is also called a Null set or Void set. It is denoted by {}.

For example: Let, Set X = {x:x is the number of students studying in Class 6th and Class 7th}

Since we know a student cannot learn simultaneously on two classes, therefore set X is an empty set.

Another example is, set Y = {a: 1<a<2, a is a natural number}, we know natural cannot be a decimal, therefore set Y is a null set or empty set.

Singleton Sets

The set which has only one element is called a singleton set.

For example, Set $X = \{2\}$ is a singleton set.

Finite and Infinite Sets

Finite sets are the one which has a finite number of elements and Infinite sets are those whose number of elements cannot be estimated but it has some figure or number, which is very large to express in a set.

For example, Set $X = \{1,2,3,4,5\}$ is a finite set, as it has a finite number of elements in it.

Set Y = {Number of Animals in India} is an infinite set, as there is an approximate number of Animals in India, but actual value cannot be expressed, as the numbers could be very large.

Equal Sets

Two sets X and Y are said to be equal if every element of set X is also the elements of set Y and if every element of set Y is also the elements of set X. It means set X and set Y have the same elements and we can denote it as;

$$X = Y$$

For example, Let $X = \{1,2,3,4\}$ and $Y = \{4,3,2,1\}$, then X = Y

And if $X = \{\text{set of even numbers}\}\$ and $Y = \{\text{ set of natural numbers}\}\$ the $X \neq Y$, because natural numbers consist of all the positive integers starting from 1,2,3,4,5 to infinity, but even numbers starts with 2,4,6,8, and so on.

Subsets

A set X is said to be a subset of set Y if the elements of set X belongs to set Y or you can say each element of set X is present in set Y. It is denoted with the symbol as $X \subset Y$.

We can also write the subset notation as;

$$X \subset Y \text{ if a } \in X \Rightarrow a \in Y$$

Thus, from the above equation, "X is a subset of Y if a is an element of X implies that a is also an element of Y".

Each set is a subset of its own set and a null set or empty set is a subset of all sets.

Power Sets

The power set is nothing but the set of all subsets. Let us explain how.

We know the empty set is a subset of all sets and every set is a subset of itself. Taking an example of set X = {2,3}. From the above given statements we can write,

- $\{\}$ is a subset of $\{2,3\}$
- {2} is a subset of {2,3}
- {3} is a subset of {2,3}
- $\{2,3\}$ is also a subset of $\{2,3\}$

Therefore, power set of $X = \{2,3\}$,

$$P(X) = \{\{\},\{2\},\{3\},\{2,3\}\}$$

Universal Sets

A universal set is a set which contains all the elements of other sets. Generally, it is represented as 'U'.

For example; set X = {1,2,3}, set Y = {3,4,5,6} and Z = {5,6,7,8,9}

Then, we can write universal set as, $U = \{1,2,3,4,5,6,7,8,9,\}$

Note: From the definition of the universal set, we can say, all the sets are subsets of the universal set. Therefore,

$$X \subset U$$

$$Y \subset U$$

And
$$Z \subset U$$

Union Of sets

A union of two sets has all their elements. It is denoted by ∪.

For example, set $X = \{2,3,7\}$ and set $Y = \{4,5,8\}$

Then union of set X and set Y will be;

$$X \cup Y = \{2,3,7,4,5,8\}$$

Properties of Union of sets:

 $X \cup Y = Y \cup X$; Commutative law

$$(X \cup Y) \cup Z = X \cup (Y \cup Z)$$

 $X \cup \{\} = X ; \{\}$ is the identity of \cup

$$X \cup X = X$$

$$U \cup X = U$$

Intersection of sets

Set of all elements, which are common to all the given sets, gives intersection of sets. It is denoted by \cap .

For example, set $X = \{2,3,7\}$ and set $Y = \{2,4,9\}$

So,
$$X \cap Y = \{2\}$$

Difference of sets

The difference of set X and set Y is such that, it has only those elements which are in the set X and not in the set Y.

i.e.
$$X - Y = \{a: a \in X \text{ and } a \notin Y\}$$

In the same manner, $Y - X = \{a: a \in Y \text{ and } a \notin X\}$

For example, if set $X = \{a, b, c, d\}$ and $Y = \{b, c, e, f\}$ then,

$$X - Y = \{a, d\} \text{ and } Y - X = \{e, f\}$$

Disjoint Sets

If two sets X and Y have no common elements and their intersection results in zero(0), then set X and Y are called disjoint sets.

It can be represented as; $X \cap Y = 0$

Exercise 1.1

Question 1:

Which of the following are sets? Justify your answer.

- (i) The collection of all months of a year beginning with the letter J.
- (ii) The collection of ten most talented writers of India.
- (iii) A team of eleven best-cricket batsmen of the world.
- (iv) The collection of all boys in your class.
- (v) The collection of all natural numbers less than 100.
- (vi) A collection of novels written by the writer Munshi Prem Chand.
- (vii) The collection of all even integers.
- (viii) The collection of questions in this Chapter.
- (ix) A collection of most dangerous animals of the world.

Answer 1:

(i) The collection of all months of a year beginning with the letter J is a well-defined collection of objects because one can definitely identify a month that belongs to this collection.

Hence, this collection is a set.

(ii) The collection of ten most talented writers of India is not a well-defined collection because the criteria for determining a writer's talent may vary from person to person.

Hence, this collection is not a set.

(iii) A team of eleven best cricket batsmen of the world is not a well-defined collection because the criteria for determining a batsman's talent may vary from person to person.

Hence, this collection is not a set.

- (iv) The collection of all boys in your class is a well-defined collection because you can definitely identify a boy who belongs to this collection. Hence, this collection is a set.
- (v) The collection of all natural numbers less than 100 is a well-defined collection because one can definitely identify a number that belongs to this collection.

Hence, this collection is a set.

(vi) A collection of novels written by the writer Munshi Prem Chand is a well-defined collection because one can definitely identify a book that belongs to this collection.

Hence, this collection is a set.

- (vii) The collection of all even integers is a well-defined collection because one can definitely identify an even integer that belongs to this collection. Hence, this collection is a set.
- (viii) The collection of questions in this chapter is a well-defined collection because one can definitely identify a question that belongs to this chapter. Hence, this collection is a set.
- (ix) The collection of most dangerous animals of the world is not a well-defined collection because the criteria for determining the dangerousness of an animal can vary from person to person.

Hence, this collection is not a set.

Question 2:

Let A = $\{1, 2, 3, 4, 5, 6\}$. Insert the appropriate symbol \in or \notin in the blank spaces:

(i) 5...A

(ii) 8...A

(iii) 0...A

- (iv) 4...A
- (v) 2...A

(vi) 10...A

Answer 2:

- (i) $5 \in A$
- (ii) 8 ∉ A
- (iii) 0 ∉ A
- (iv) $4 \in A$
- (v) $2 \in A$
- (vi) 10 ∉ A

Question 3:

Write the following sets in roster form:

- (i) $A = \{x: x \text{ is an integer and } -3 < x < 7\}.$
- (ii) $B = \{x: x \text{ is a natural number less than 6}\}.$
- (iii) $C = \{x: x \text{ is a two-digit natural number such that the sum of its digits is 8}$

- (iv) $D = \{x: x \text{ is a prime number which is divisor of } 60\}.$
- (v) E = The set of all letters in the word TRIGONOMETRY.
- (vi) F = The set of all letters in the word BETTER.

Answer 3:

(i) $A = \{x: x \text{ is an integer and } -3 < x < 7\}$

The elements of this set are -2, -1, 0, 1, 2, 3, 4, 5, and 6 only.

Therefore, the given set can be written in roster form as

$$A = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$$

(ii) $B = \{x: x \text{ is a natural number less than 6} \}$

The elements of this set are 1, 2, 3, 4, and 5 only.

Therefore, the given set can be written in roster form as

$$B = \{1, 2, 3, 4, 5\}$$

(iii) $C = \{x: x \text{ is a two-digit natural number such that the sum of its digits is 8}$ The elements of this set are 17, 26, 35, 44, 53, 62, 71, and 80 only.

Therefore, this set can be written in roster form as

$$C = \{17, 26, 35, 44, 53, 62, 71, 80\}$$

(iv) D = $\{x: x \text{ is a prime number which is a divisor of } 60\}$

$$60 = 2 \times 2 \times 3 \times 5$$

The elements of this set are 2, 3, and 5 only.

Therefore, this set can be written in roster form as $D = \{2, 3, 5\}$.

(v) E = The set of all letters in the word TRIGONOMETRY

There are 12 letters in the word TRIGONOMETRY, out of which letters T, R, and O are repeated.

Therefore, this set can be written in roster form as

$$E = \{T, R, I, G, O, N, M, E, Y\}$$

(vi) F = The set of all letters in the word BETTER

There are 6 letters in the word BETTER, out of which letters E and T are repeated.

Therefore, this set can be written in roster form as

$$F = \{B, E, T, R\}$$

Question 4:

Write the following sets in the set-builder form:

Answer 4:

(i)
$$\{3, 6, 9, 12\} = \{x: x = 3n, n \in \mathbb{N} \text{ and } 1 \le n \le 4\}$$

It can be seen that $2 = 2^1$, $4 = 2^2$, $8 = 2^3$, $16 = 2^4$, and $32 = 2^5$.

$$\{2, 4, 8, 16, 32\} = \{x: x = 2^n, n \in \mathbb{N} \text{ and } 1 \le n \le 5\}$$

It can be seen that $5 = 5^1$, $25 = 5^2$, $125 = 5^3$, and $625 = 5^4$.

$$\therefore \{5, 25, 125, 625\} = \{x: x = 5^n, n \in \mathbb{N} \text{ and } 1 \le n \le 4\}$$

It is a set of all even natural numbers.

$$...$$
 {2, 4, 6 ...} = {x: x is an even natural number}

It can be seen that $1 = 1^2$, $4 = 2^2$, $9 = 3^2 ... 100 = 10^2$.

$$\{1, 4, 9... 100\} = \{x: x = n^2, n \in \mathbb{N} \text{ and } 1 \le n \le 10\}$$

Question 5:

List all the elements of the following sets:

(ii) B =
$$\{x: x \text{ is an } -\frac{1}{2} < x < \frac{9}{2} \text{ integer,} \}$$

(iii)
$$C = \{x: x \text{ is an } x^2 \le 4\}$$
 integer,

(iv)
$$D = \{x: x \text{ is a letter in the word "LOYAL"}\}$$

(v)
$$E = \{x: x \text{ is a month of a year not having 31 days}\}$$

(vi)
$$F = \{x: x \text{ is a consonant in the English alphabet which proceeds } k\}.$$

Answer 5:

(i) $A = \{x: x \text{ is an odd natural number}\} = \{1, 3, 5, 7, 9 ...\}$

(ii) B = {x: x is an integer;
$$-\frac{1}{2} < n < \frac{9}{2}$$
}

It can be seen that $-\frac{1}{2} = -0.5$ and $\frac{9}{2} = 4.5$

$$= \{0,1,2,3,4\}$$

(iii) $C = \{x: x \text{ is an integer; } x^2 \le 4\}$

It can be seen that

$$(-1)^2 = 1 \le 4$$
; $(-2)^2 = 4 \le 4$; $(-3)^2 = 9 > 4$

$$0^2 = 0 \le 4$$

$$1^2 = 1 \le 4$$

$$2^2 = 4 \le 4$$

$$3^2 = 9 > 4$$

$$C = \{-2, -1, 0, 1, 2\}$$

- (iv) $D = (x: x \text{ is a letter in the word "LOYAL"}) = \{L, O, Y, A\}$
- (v) $E = \{x: x \text{ is a month of a year not having 31 days}\}$

= {February, April, June, September, November}

(vi) $F = \{x: x \text{ is a consonant in the English alphabet which precedes } k\}$ = $\{b, c, d, f, g, h, j\}$

Question 6:

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

(I) {1, 2, 3, 6}	(A) {X: X IS A PRIME NUMBER AND A DIVISOR OF 6}
(II) {2, 3}	(B) {X: X IS AN ODD NATURAL NUMBER LESS THAN 10}
(III) {M, A,T, H, E, I,C, S}	(C) {X: X IS NATURAL NUMBER AND DIVISOR OF 6}
(IV) {1, 3, 5, 7, 9}	(D) {X: X IS A LETTER OF THE WORD MATHEMATICS}

Answer 6:

(i) All the elements of this set are natural numbers as well as the divisors of 6.

Therefore, (i) matches with (c).

(ii) It can be seen that 2 and 3 are prime numbers. They are also the divisors of 6.

- (iii) All the elements of this set are letters of the word MATHEMATICS.

 Therefore, (iii) matches with (d).
- (iv) All the elements of this set are odd natural numbers less than 10. Therefore, (iv) matches with (b).

Exercise 1.2

Question 1:

Which of the following are examples of the null set

- (i) Set of odd natural numbers divisible by 2
- (ii) Set of even prime numbers
- (iii) $\{x:x \text{ is a natural numbers, } x < 5 \text{ and } x > 7 \}$
- (iv) {y:y is a point common to any two parallel lines}

Answer 1:

- (i) A set of odd natural numbers divisible by 2 is a null set because no odd number is divisible by 2.
- (ii) A set of even prime numbers is not a null set because 2 is an even prime number.
- (iii) $\{x: x \text{ is a natural number, } x < 5 \text{ and } x > 7\}$ is a null set because a number cannot be simultaneously less than 5 and greater than 7.
- (iv) $\{y: y \text{ is a point common to any two parallel lines}\}$ is a null set because parallel lines do not intersect. Hence, they have no common point.

Question 2:

Which of the following sets are finite or infinite

- The set of months of a year
- (ii) {1, 2, 3 ...}
- (iii) {1, 2, 3 ... 99, 100}
- (iv) The set of positive integers greater than 100
- (v) The set of prime numbers less than 99

Answer 2:

- (i) The set of months of a year is a finite set because it has 12 elements.
- (ii) {1, 2, 3 ...} is an infinite set as it has infinite number of natural numbers.
- (iii) {1, 2, 3 ...99, 100} is a finite set because the numbers from 1 to 100 are finite in number.
- (iv) The set of positive integers greater than 100 is an infinite set because positive integers greater than 100 are infinite in number.
- (v)The set of prime numbers less than 99 is a finite set because prime numbers less than 99 are finite in number.

Question 3:

State whether each of the following set is finite or infinite:

- (i) The set of lines which are parallel to the x-axis
- (ii) The set of letters in the English alphabet

- (iii) The set of numbers which are multiple of 5
- (iv) The set of animals living on the earth
- (v) The set of circles passing through the origin (0, 0)

Answer 3:

- (i) The set of lines which are parallel to the x-axis is an infinite set because lines parallel to the x-axis are infinite in number.
- (ii) The set of letters in the English alphabet is a finite set because it has 26 elements.
- (iii) The set of numbers which are multiple of 5 is an infinite set because multiples of 5 are infinite in number.
- (iv) The set of animals living on the earth is a finite set because the number of animals living on the earth is finite (although it is quite a big number).
- (v) The set of circles passing through the origin (0, 0) is an infinite set because infinite number of circles can pass through the origin.

Question 4:

In the following, state whether A = B or not:

- (i) $A = \{a, b, c, d\}; B = \{d, c, b, a\}$
- (ii) $A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$
- (iii) $A = \{2, 4, 6, 8, 10\}; B = \{x: x \text{ is positive even integer and } x \le 10\}$
- (iv) $A = \{x: x \text{ is a multiple of } 10\}; B = \{10, 15, 20, 25, 30 ...\}$

Answer 4:

(i)
$$A = \{a, b, c, d\}; B = \{d, c, b, a\}$$

The order in which the elements of a set are listed is not significant.

$$A = B$$

(ii)
$$A = \{4, 8, 12, 16\}; B = \{8, 4, 16, 18\}$$

It can be seen that $12 \in A$ but $12 \notin B$.

(iii)
$$A = \{2, 4, 6, 8, 10\}$$

 $B = \{x: x \text{ is a positive even integer and } x \le 10\}$
 $= \{2, 4, 6, 8, 10\}$

(iv) $A = \{x: x \text{ is a multiple of } 10\}$

$$B = \{10, 15, 20, 25, 30 ...\}$$

It can be seen that $15 \in B$ but $15 \notin A$.

Question 5:

Are the following pair of sets equal? Give reasons.

- (i) $A = \{2, 3\}$; $B = \{x: x \text{ is solution of } x^2 + 5x + 6 = 0\}$
- (ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a letter in the word WOLF}

Answer 5:

(i) $A = \{2, 3\}$; $B = \{x: x \text{ is a solution of } x^2 + 5x + 6 = 0\}$

The equation $x^2 + 5x + 6 = 0$ can be solved as: x(x + 3) + 2(x + 3) = 0

$$(x + 2)(x + 3) = 0$$
; $x = -2$ or $x = -3$

$$A = \{2, 3\}; B = \{-2, -3\}$$

(ii) $A = \{x: x \text{ is a letter in the word FOLLOW}\} = \{F, O, L, W\}$

$$B = \{y: y \text{ is a letter in the word WOLF}\} = \{W, O, L, F\}$$

The order in which the elements of a set are listed is not significant.

Question 6:

From the sets given below, select equal sets:

$$A = \{2, 4, 8, 12\}, B = \{1, 2, 3, 4\}, C = \{4, 8, 12, 14\}, D = \{3, 1, 4, 2\}$$

 $E = \{-1, 1\}, F = \{0, a\}, G = \{1, -1\}, H = \{0, 1\}$

Answer 6:

A =
$$\{2, 4, 8, 12\}$$
; B = $\{1, 2, 3, 4\}$; C = $\{4, 8, 12, 14\}$
D = $\{3, 1, 4, 2\}$; E = $\{-1, 1\}$; F = $\{0, a\}$
G = $\{1, -1\}$; A = $\{0, 1\}$

It can be seen that

$$8 \in A$$
, $8 \notin B$, $8 \notin D$, $8 \notin E$, $8 \notin F$, $8 \notin G$, $8 \notin H$
 $\Rightarrow A \neq B$, $A \neq D$, $A \neq E$, $A \neq F$, $A \neq G$, $A \neq H$

Also,
$$2 \in A$$
, $2 \notin C$

$$3 \in B$$
, $3 \notin C$, $3 \notin E$, $3 \notin F$, $3 \notin G$, $3 \notin H$
 $\therefore B \neq C$, $B \neq E$, $B \neq F$, $B \neq G$, $B \neq H$
 $12 \in C$, $12 \notin D$, $12 \notin E$, $12 \notin F$, $12 \notin G$, $12 \notin H$
 $\therefore C \neq D$, $C \neq E$, $C \neq F$, $C \neq G$, $C \neq H$

$$4 \in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$$

$$\therefore D \neq E$$
, $D \neq F$, $D \neq G$, $D \neq H$

Similarly,
$$E \neq F$$
, $E \neq G$, $E \neq H$, $F \neq G$, $F \neq H$, $G \neq H$

The order in which the elements of a set are listed is not significant.

$$B = D$$
 and $E = G$

Hence, among the given sets, B = D and E = G.